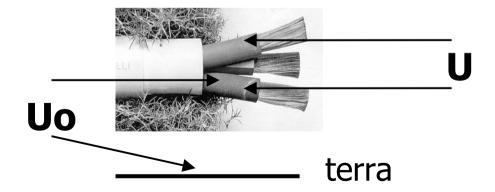

Condutture Elettriche

Conduttura (CEI 64-8/2 art. 26.1): Insieme costituito da uno o più conduttori elettrici e dagli elementi che assicurano il loro isolamento, il loro supporto, il loro fissaggio e la loro eventuale protezione meccanica.

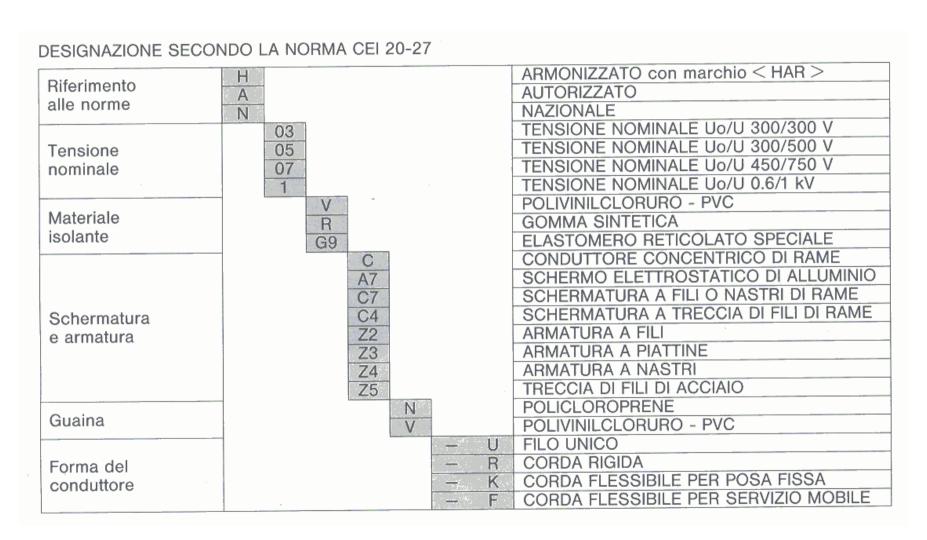
Le Condizioni Di Posa

- La norma CEI 64-8/5 stabilisce quali tipi di posa sono consentiti per ogni tipologia di cavo (tab. 52a). Questo perché durante la posa il cavo viene sottoposto a sforzi che potrebbero danneggiarlo.
- Distinguiamo i cavi con guaina dai cavi privi di guaina
- I cavi con guaina possono essere installati praticamente ovunque (in vista, ancorati alle strutture, ...)
- I cavi privi di guaina devono essere installati in tubi, o canali specificamente certificati per tale uso.

Le Condizioni di Posa

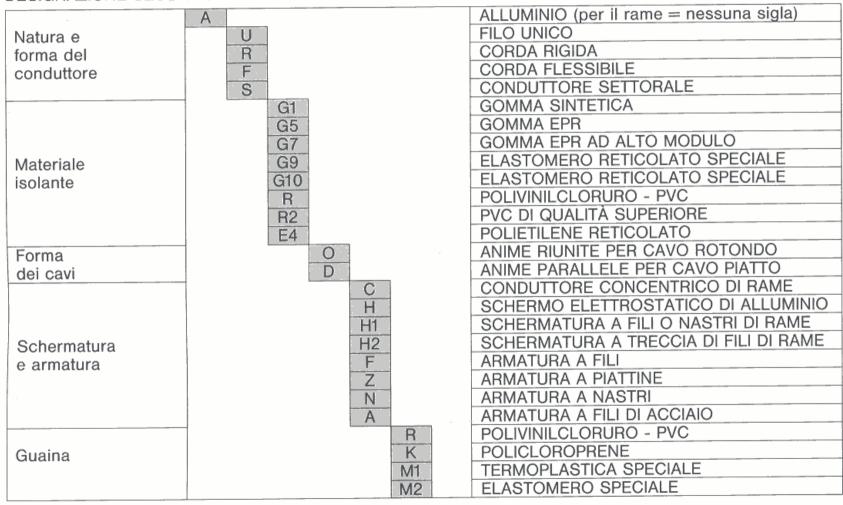

- Inoltre i cavi devono essere adatti per l'uso che viene previsto, ossia devono essere in grado di sopportare le sollecitazioni ambientali e meccaniche che derivano dall'utilizzo.
- Distinguiamo i cavi per posa fissa dai cavi per posa mobile
- I cavi per posa fissa devono essere installati in tubazioni o canali o, al limite, in vista su sostegni.
- Per utenze destinate a muoversi durante l'uso (quali la cabina dell'ascensore) devono essere utilizzati cavi per posa mobile.

Le Condizioni di Posa


- I cavi (come tutti i componenti elettrici, devono essere adatti al luogo dove vengono installati.
- Nella scelta devono essere tenute in conto:
 - Temperatura
 - Umidità
 - Agenti chimici
 - Sollecitazioni meccaniche (abrasioni, tagli, schiacciamento)
- Tali condizioni possono danneggiare gli strati isolanti o alterare la portata massima (vedi oltre).

L'Isolamento

- Ogni componente elettrico deve essere isolato in modo tale da poter sopportare la massima tensione che gli viene applicata.
- Nei circuiti alimentati alla tensione di rete la massima tensione è 230 V per le reti monofase e 400 V per le reti trifase.
- Negli ascensori vi sono circuiti a tensioni inferiore, per cui si possono utilizzare cavi con gradi di isolamento inferiori.
- Per i cavi vengono indicati 2 valori dell'isolamento: Uo tra fase e terra, U tra le fasi.



Le Sigle di Designazione

Le Sigle di Designazione

DESIGNAZIONE SECONDO TABELLA CEI UNEL 35011

Esempio

N07V-K

BASSA TENSIONE

CABLAGGIO E ENERGIA

UNEL 35752, CEI 20-22 II, CEI 20-37/2, CEI 20-35, SENZA PIOMBO

CE

DESCRIZIONE DEL CAVO

Cavi non propaganti l'incendio e a ridotta emissione di gas corrosivi, unipolari senza guaina isolati in pvc, con conduttore flessibile in rame rosso.

Isolante

Nero, blu chiaro, marrone, grigio, arancione, rosa, rosso, azzurro, viola, bianco, giallo/verde.

CARATTERISTICHE FUNZIONALI

Tensione nominale Uo/U: 450/750 V Temperatura massima di esercizio: 70°C Temperatura massima di corto circuito: 160°C

CARATTERISTICHE PARTICOLARI

Buona scorrevolezza nelle tubazioni, buona resistenza alle abrasioni, ottima spellabilità.

Esempio (segue)

CARATTERISTICHE PARTICOLARI

Buona scorrevolezza nelle tubazioni, buona resistenza alle abrasioni, ottima spellabilità.

CONDIZIONI DI POSA

Temperatura minima di posa: 5°C.

Raggio minimo di curvatura consigliato: 6 volte il diametro del cavo.

Massimo sforzo di trazione consigliato: 5 kg per mm² di sezione del rame.

IMPIEGO E TIPO DI POSA

In ambienti con pericolo di incendio, Installazione entro tubazioni in vista o incassate o sistemi chiusi similari. Installazione fissa entro apparecchi di illuminazione o apparecchiature di interruzione e di comando, Per installazione protetta all'interno di apparecchiature di interruzione e di comando, questi cavi sono ammessi per tensioni fino a 1000 V in ca. e 750 V verso terra. La sezione di 1 mm² è prevista solo per circuiti elettrici di ascensori e montacarichi o per collegamento interno di quadri elettrici per segnalamento e comando. Per installazione a rischio di incendio la temperatura massima di esercizio non deve superare i 55°C. Non adatti per posa all'esterno.

IMBALLO

Fino a 6 mm² in scatole contenenti matasse da 100 m oppure in fustelle; per sezioni oltre 6 mm² in matasse da 100 m o bobine.

COLORI DISPONIBILI

Nero, blu chiaro, marrone, grigio, arancione, rosa, rosso, azzurro, viola, bianco, giallo / verde.

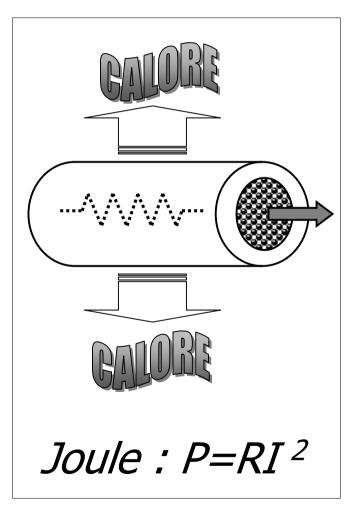
Colori Distintivi

Tabella CEI UNEL 00722

Colori distintivi delle anime dei cavi isolati

- Conduttore di protezione o equipotenziale: giallo rigato verde
- Conduttore di neutro: blu chiaro
- Conduttori di fase: preferibilmente nero, grigio, marrone
- ! Nei cavi multipolari è consentito l'uso del blu chiaro anche per la fase.
- ! Il conduttore di colore giallo/verde può essere utilizzato **solamente** per il per il conduttore di protezione o equipotenziale

In Caso di Incendio


Le condutture elettriche non devono:

- •Essere fonte di innesco di incendi o esplosioni
- Non propagare l'incendio da un locale all'altro.

Per il primo requisito, si devono installare dispositivi che proteggano il cavo dalle sovracorrenti (vedi oltre). Inoltre le connessioni (giunzioni e derivazioni) devono essere realizzate a regola d'arte (par. 526 CEI 64-8/5).

La non propagazione si ottiene utilizzando cavi conformi alla norma CEI 20-22. In installazioni particolarmente a rischio si adottando ulteriori accorgimenti (es. barriere tagliafiamma).

Sovracorrenti

- Ogni conduttore elettrico presenta una Resistenza (seppure piccola).
- Per effetto della resistenza, al passaggio della corrente si genera calore (effetto Joule).
- Tale calore viene trasmesso all'ambiente tramite l'isolante.
- Si definisce <u>portata</u> della conduttura (Iz) il massimo valore della corrente che può fluire in una conduttura senza che la sua temperatura superi un valore specificato.
- Si definisce <u>sovracorrente</u> ogni corrente che supera la portata.

Sovraccarico e Cortocircuito

Definizioni

CORRENTE DI SOVRACCARICO.

Sovracorrente che si verifica in un circuito elettricamente sano.

CORRENTE DI CORTOCIRCUITO

Sovracorrente che si verifica a seguito di un guasto di impedenza trascurabile fra due punti fra i quali esiste tensione in condizioni ordinarie di esercizio.

Il sovraccarico non è dovuto ad un guasto, ma ad un cattivo utilizzo dell'impianto. Può accedere se si collegano apparecchi con potenza superiore alla massima che può transitare sul cavo.

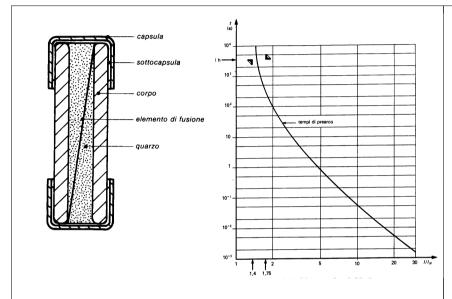
Il cortocircuito è dovuto ad un guasto che mette in contatto elettrico 2 o più conduttori (es. fase e neutro o fase e fase).

I 2 fenomeni provocano il riscaldamento delle condutture oltre il massimo consentito ma, data la differente natura, gli effetti sono diversi.

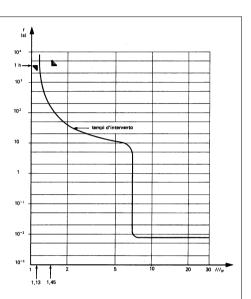
SOVRACCARICO: riscaldamento della conduttura con rischio di deterioramento dell'isolante, di ustione per le persone e di incendio (del cavo o del materiale circostante).

CORTOCIRCUITO: effetti termici superiori e possibili sforzi elettrodinamici per effetti della notevole intensità dei campi magnetici.

CEI-UNEL 35024/1


	Altri tipi di	Tipo di isolamento	Numero cond. caricati	(1) Portata (A)																
Metodologia tipica di	posa Rif. Appendice A (4)			Sezione (mm²)																
installazione				1	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300
Cavo in tubo incassato in parete isolante	2-51-73-74	PVC (2)	2 3	-	14 13	18,5 17,5	25 23	32 29	43 39	57 52	75 68	92 83	110 99	139 125	167 150	192 172	219 196	248 223	291 261	334 298
		EPR (3)	2 3		18,5 16,5	25 22	33 30	42 38	57 51	76 68	99 89	121 109	145 130	183 164	220 197	253 227	290 259	329 295	386 346	442 396
Cavo in tubo in aria	3A-4A-21- 22A-5A-21A- 25-33A-31- 34A-43-32	PVC (2)	2 3	13,5 12	16,5 15	23 20	30 27	38 34	52 46	69 62	90 80	111 99	133 118	168 149	201 179	232 206	258 225	294 255	344 297	394 339
		EPR (3)	2 3	17 15	22 19,5	30 26	40 35	51 44	69 60	91 80	119 105	146 128	175 154	221 194	265 233	305 268	334 300	384 340	459 398	532 455
Cavo in aria libera, distanziato dalla parete/soffitto o su passerella	13-14-15-16- 17	PVC (2)	2 3	15 13,6	22 18,5	30 25	40 34	51 43	70 60	94 80	119 101	148 126	180 153	232 196	282 238	328 276	379 319	434 364	514 430	593 497
		EPR (3)	2 3	19 17	26 23	36 32	49 42	63 54	86 75	115 100	149 127	185 158	225 192	289 246	352 298	410 346	473 399	542 456	641 538	741 621
Cavo in aria libera, fissato alla parete/soffitto	11-11A-52- 53	PVC (2)	2 3	15 13,5	19,5 17,5	27 24	36 32	46 41	63 57	85 76	112 96	138 119	168 144	213 184	258 223	299 259	344 299	392 341	461 403	530 464
		EPR (3)	2 3	19 17	24 22	33 30	45 40	58 52	80 71	107 96	138 119	171 147	209 179	269 229	328 278	382 322	441 371	506 424	599 500	693 576


Fattori di correzione

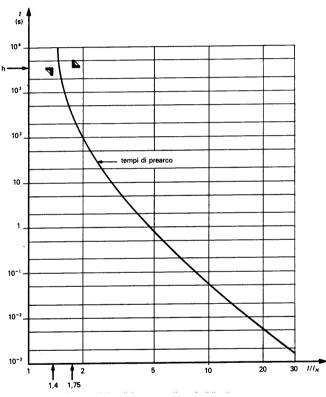

Tab. V Fattori di correzione k₂ per circuiti realizzati con cavi multipolari installati in strato su più supporti (es. passerelle)

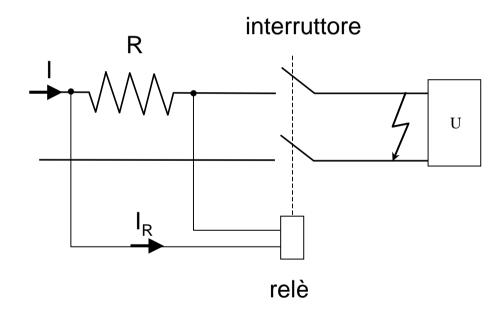
	Metodo di		Numero di cavi									
Appendice A		Numero di passerelle	1	2	3	4	6	9				
13	Passerelle perforate (Nota 1)	20 mm	2 3	1,00 1,00	0,87 0,86	0,80 0,79	0,77 0,76	0,73 0,71	0,68 0,66			
10		De	2 3	1,00 1,00	0,99 0,98	0,96 0,95	0,92 0,91	0,87 0,85	- -			

<u>Dispositivi di Protezione</u>

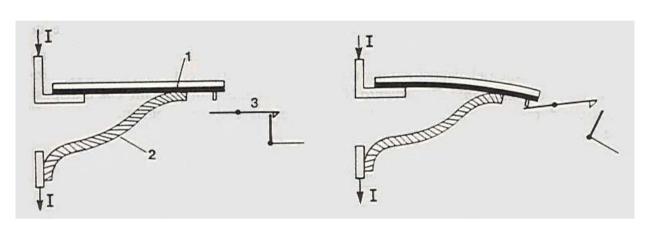
FUSIBILE

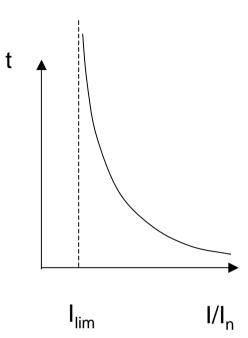
INTERRUTTORE MAGNETOTERMICO


<u>Fusibile</u>



I fusibili sono i più semplici dispositivi di protezione contro le sovracorrenti. Sono costituiti essenzialmente da un corto conduttore in lega a basso punto di fusione alloggiato entro un apposito contenitore. Dopo l'intervento, il fusibile va sostituito per ristabilire la connessione elettrica dell'impianto.


Relè Amperometrico

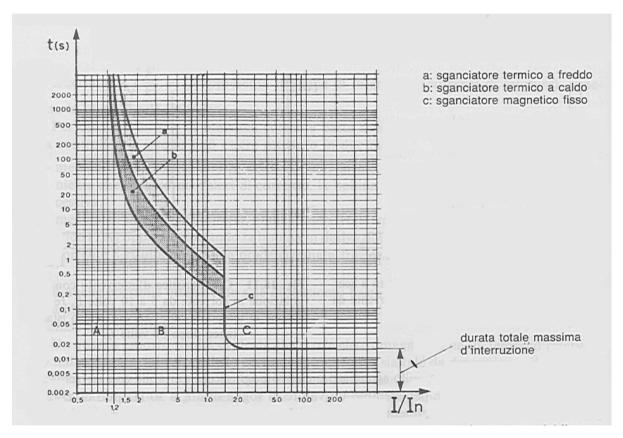

Gli interruttori automatici utilizzati per la protezione dalle sovracorrenti utilizzano i relè amperometrici, che intervengono quando la corrente supera un valore limite caratteristico del relè.

I relè amperometrico utilizzato è il relè magneto-termico, costituito da un relè termico ed un relè magnetico con correnti di intervento opportunamente coordinate.

Relè Termico

Il relè termico è costituito da una lamina bimetallica.

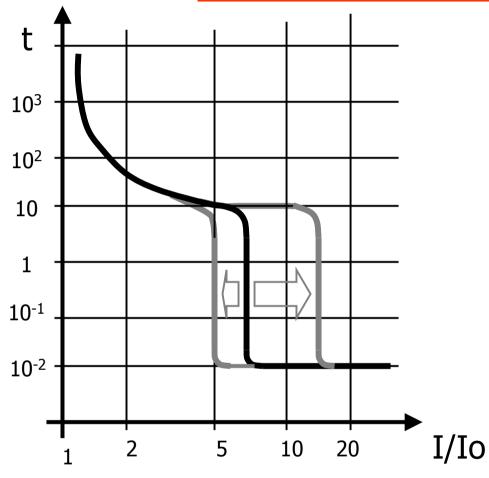
- Ad ogni valore della corrente / corrisponde un valore della temperatura di regime della lamina, tanto più alto quanto più elevato è il valore della corrente.
- Tanto più alta è la temperatura della lamina, tanto maggiore è la curvatura della stessa, dovuta al diverso valore del coefficiente di dilatazione termica dei metalli costituenti.
- Quando la temperatura raggiunge il valore di intervento, la curvatura della lamina fa sì che venga attivato il meccanismo di apertura dell'interruttore.
- Il tempo di intervento è tanto più breve quanto più alta è la sovracorrente.


Relè Magnetico FEM FM C

Il relè magnetico è costituito da un nucleo di materiale ferromagnetico diviso in una parte fissa (EM) ed una parte mobile (A). La parte mobile è tenuta in posizione da una forza di natura magnetica (F_{EM}), proporzionale alla corrente *I*, ed una forza di natura meccanica, dovuta alla molla M.

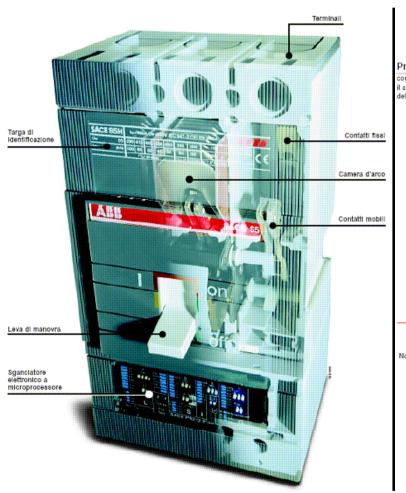
- Ad ogni valore della corrente / corrisponde una posizione di equilibrio della parte mobile, tanto più prossima alla parte fissa quanto più elevato è il valore della corrente.
- Quando la corrente raggiunge il valore di intervento, la posizione di equilibrio della parte mobile fa sì che venga attivato il meccanismo di apertura dell'interruttore.
- Il tempo di intervento è molto breve, praticamente indipendente dal valore della corrente.

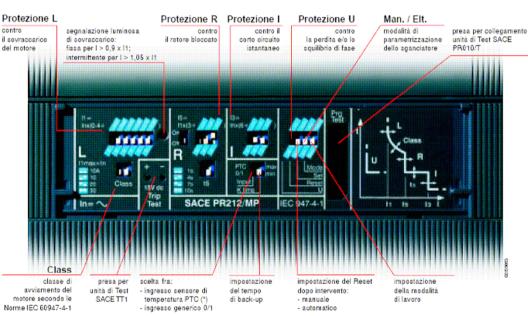
Relè Magneto-termico


Il relè magneto-termico è costituito da un relè magnetico ed un relè termico le cui correnti di intervento sono coordinate in modo che:

 il relè magnetico interviene rapidamente solo in caso di sovracorrenti di elevata intensità (almeno 5 volte quella nominale), sicuramente dovute a corto-circuiti presenti nell'impianto.

 Il relè termico interviene con un tempo di intervento inversamente proporzionale alla intensità della sovracorrente in caso di sovracorrenti di modesta entità (sovraccarichi) che possono anche essere dovute a "normali" transitori dell'impianto.


Le Curve di Intervento



La soglia magnetica cambia con il tipo di interruttore. Per il tipo usato più di frequente (tipo C).

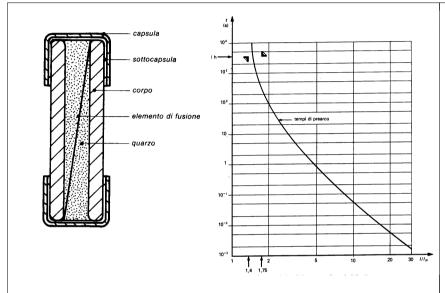
tipo	soglia
В	3-5 In
С	5-10 In
D	10-14 In

Interruttori per uso industriale

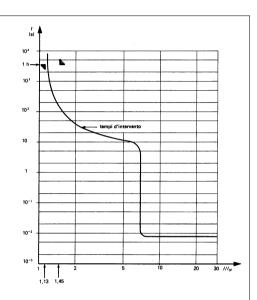
Potere di Interruzione (Pi)

Il **potere di interruzione** Pi di un <u>componente elettrico</u> (in genere interruttore o fusibile) indica la <u>corrente massima</u> entro la quale il componente stesso è in grado di <u>aprire il circuito</u>.

Poiché la condizione peggiore si verifica in condizioni di <u>cortocircuito</u>, in cui il <u>conduttore</u> è percorso da una corrente di intensità lcc, per garantire la sicurezza ed il corretto funzionamento dell'<u>impianto elettrico</u> occorre che sia soddisfatta la relazione:


Potere di interruzione nominale di servizio (Ics)

Dopo la prova l'interruttore è in grado di riprendere il servizio ordinario


Potere di interruzione nominale estremo (Icu)

Dopo la prova l'interruttore assicura alcune funzionalità di base ma può non essere in grado di portare con continuità la propria corrente nominale

Protezione dal Sovraccarico

FUSIBILE

INTERRUTTORE MAGNETOTERMICO

CEI 64-8/4 art. 433.2

- $Ib \leq In \leq Iz$
- If ≤ 1,45 Iz

- •Ib corrente di funzionamento del circuito
- •In corrente nominale del dispositivo di protezione
- •Iz portata in regime permanente della conduttura
- •If corrente di sicuro intervento del disp. di protezione entro un tempo stabilito

Un Esempio

Motore trifase Pn=10kW

 $Ib = Pn/(Vn \times 1.732 \times cos\phi)$

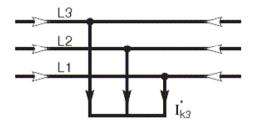
Portata dei cavi

(Cavo in PVC in tubo incassato)

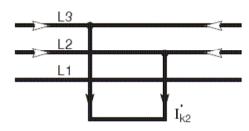
Sez.	1,5	2,5	4	6
Iz	13,5	18	24	31

Interruttore magnetotermico

In (A) = 6, 10, 16, 20, 25, 32, 40

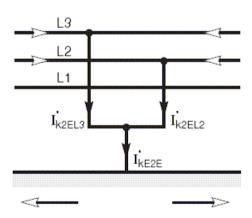

CEI 64-8/4 art. 433.2

- $Ib \leq In \leq Iz$
- If ≤ 1,45 Iz

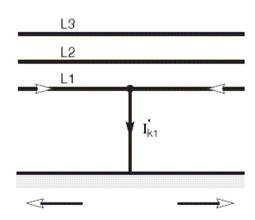

- •Ib corrente di funzionamento del circuito
- •In corrente nominale del dispositivo di protezione
- •Iz portata della conduttura
- •If corrente di sicuro intervento del disp. di protezione entro un tempo stabilito

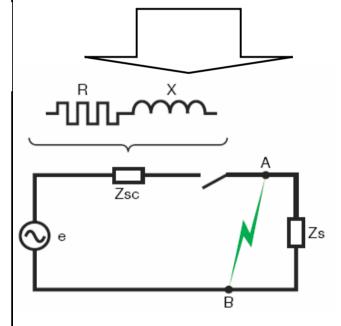
Cortocircuito

a) Three-phase short-circuit

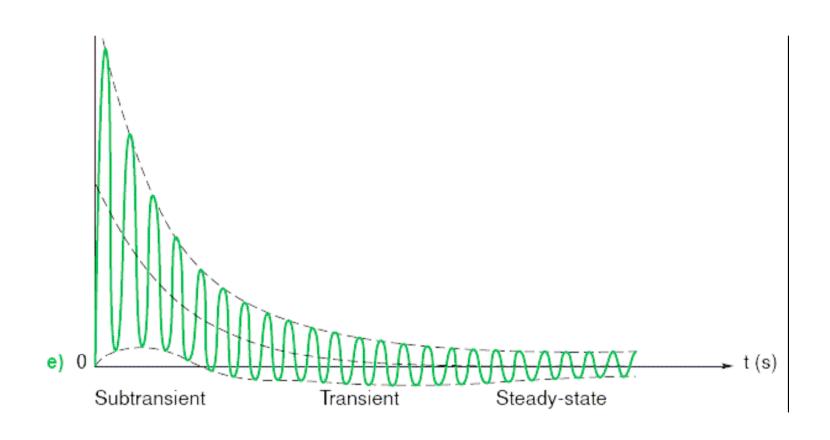


b) Phase-to-phase short-circuit clear of earth

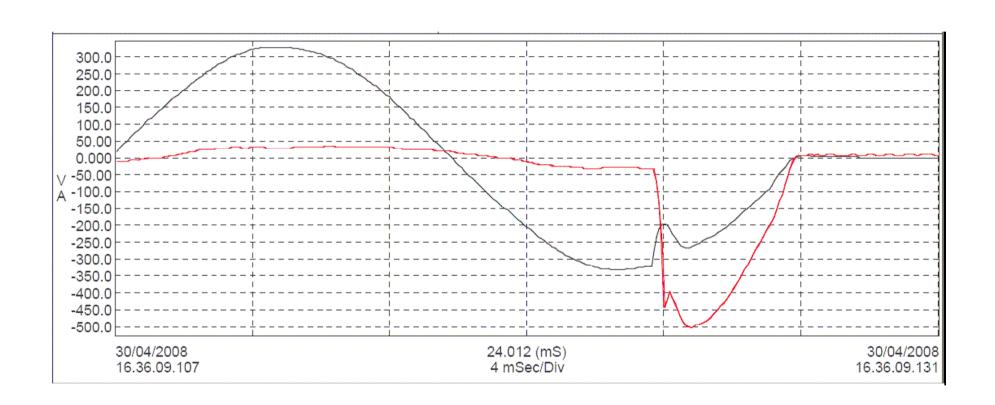



Circuito equivalente

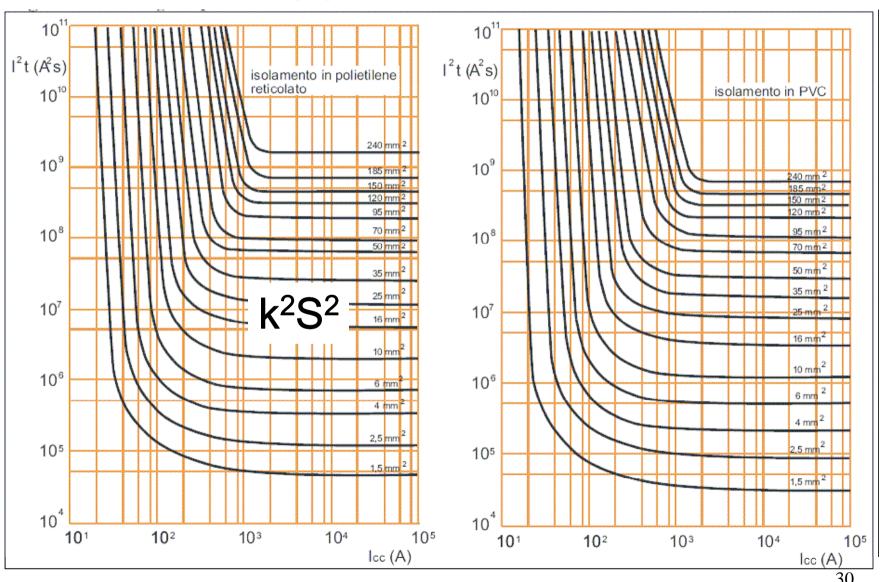
d) Phase-to-earth short-circuit

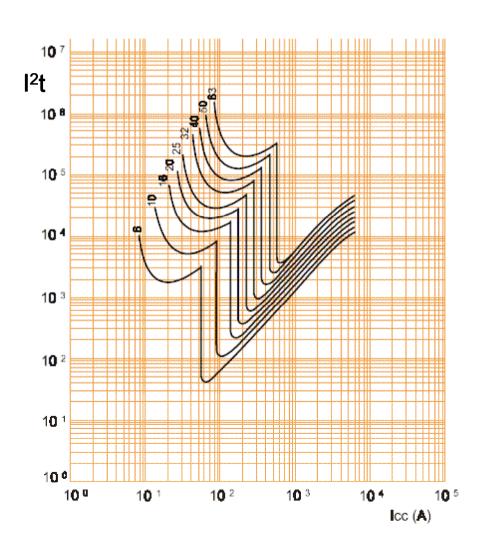


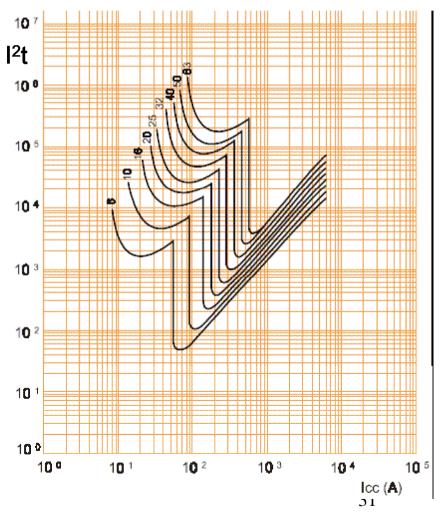
27


── Short-circuit current,

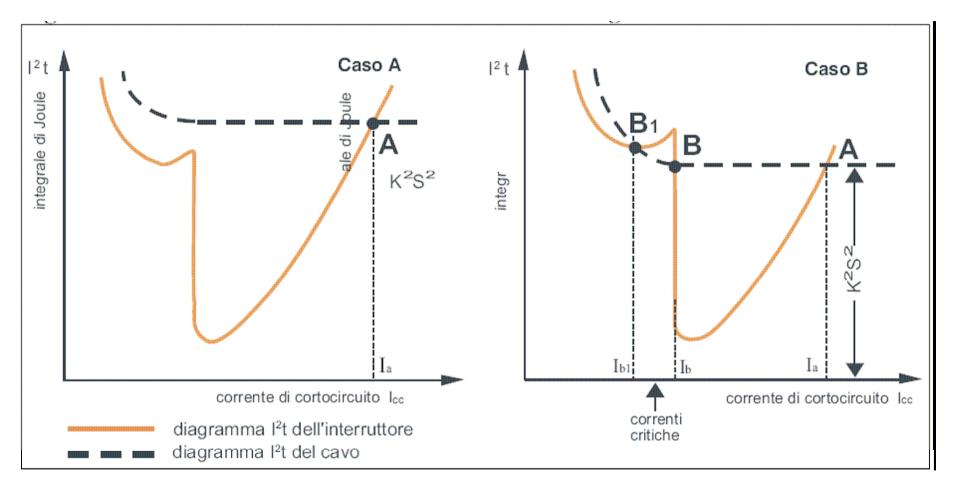
Partial short-circuit currents in conductors and earth.


Correnti di Cortocircuito

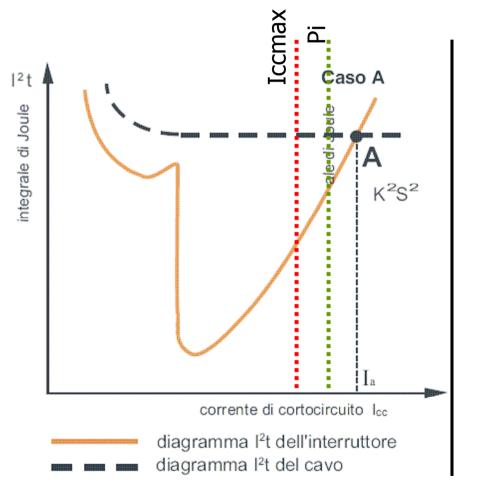

Correnti Di Cortocircuito



I²t sopportabile dal cavo



I²t limitata dall'interruttore



Protezione da cortocircuito

Protezione realizzata con interruttore magnetotermico

Verifica della protezione

Pi => Iccmax

Iccmax < Ia